RECURRENT FUZZY NEURAL NETWORK CONTROL FOR MIMO NONLINEAR SYSTEMS

Yi-Jen Mon
Department of Computer Science and Information Engineering
Nanya Institute of Technology
Chungli, Taoyuan, Taiwan, R.O.C
E-mail: monbuy@nanya.edu.tw

Chih-Min Lin and Chin-Hsu Leng
Department of Electrical Engineering
Yuan-Ze University, Chung-Li, Tao-Yuan, 320,
Taiwan, Republic of China
cml@saturn.yzu.edu.tw

ABSTRACT—This paper develops a design method of recurrent fuzzy neural network (RFNN) control system for multi-input multi-output (MIMO) nonlinear dynamic systems. This control system consists of a state feedback controller and an RFNN controller. The state feedback controller is a basic stabilizing controller to stabilize the system, and the RFNN controller presents a robust controller to deal with uncertain parts of system dynamics and external disturbances. The adaptive laws of the RFNN parameters are derived based on the Lyapunov synthesis approach and a projection algorithm, so that the stability of the system and convergence of the parameters can be guaranteed. The simulation results for a robotic system and an ecological system confirm the effectiveness of the proposed design method.

Key Words: Recurrent fuzzy neural network; MIMO nonlinear system; Robotic system; Ecological system